High Fidelity, Year Long Power Network Data Sets for Replicable Power System Research

Project GridData, DOE/ARPA-E

ISGT, Minneapolis
September 2016
Outline

• Overview of the Project

• First ideas
 – An new format
 – Network types
 – Problems
 – Transformations

• Open questions
Project Team

• Russell Bent (LANL) [CS]
 – Infrastructure modeling and optimization
• Daniel Bienstock (Columbia) [OR]
 – optimization and power systems
• Carleton Coffrin (LANL) [CS]
 – optimization and power systems
• Ian Hiskens (Michigan) [EE]
 – power engineer, power system analysis
• Steven Low (Caltech) [EE]
 – control and optimization of power systems
• Patrick Pambiatici (RTE)
 – Scientific advisor, RTE (Largest European TSO)
• Pascal Van Hentenryck (Michigan) [CS/OR]
 – optimization for power systems, computer systems
Name of the project
– intended to last beyond the ARPA-E project

Grid Data For Good (GDG)
Project Overview

• **Format**
 – new format capturing networks with high-fidelity

• **Modeling**
 – specifying components, devices, and corrective actions accurately

• **Test cases**
 – RTE test cases: French transmission systems at various voltage levels
 – Synthetic benchmarks: transforming realistic test cases

• **Validation and analysis tools**
 – validating test cases for realism and difficulties

• **Obfuscation and disaggregation**
 – from real test cases to anonymous test cases preserving their essence
Why a new format?

A format appropriate for computational tools in power systems

• Key features:
 – high fidelity
 ► describes the components used in industry
 → including discrete behavior, modeling of corrective actions, ...
 – standardization of the components
 ► schema and equations
 – extensibility
 ► easy to add new components
 – general-purpose
 ► can represent a wide range of problems
Example: Substation Topology

Bus-Branch

Bus-Breaker

Node-Breaker
Advanced Features

- The format will go beyond the network format
 - it will include new concepts that are typically hidden in internal tools

- Key objective
 - automate, at a high level, many such tools
 - e.g., no need that the entire world reimplement a per-unit transformation

- New concepts
 - network types
 - problem types
 - transformations
Network Types

- **A network type specifies**
 - parameters (aka data or constants)
 - decision variables (what algorithms can decide upon)
 - e.g., active power of a generator
 - state variables (what describes the system state)
 - e.g., phase angles
 - additional required attributes
 - attributes that must be present
 - components
 - the set of components supported by the “targeted” algorithm
Problems: Preliminary Specification

- **Purpose**
 - define what a problem is

- **Key ideas**
 - include a network type
 - include an objective function: e.g., minimizing squared differences to generator set points
 - include additional constraints: e.g., Security constraints = Multi states
 - may include selection of parameter values: e.g., activation of AGC

- **Objective functions (and constraints)**
 - component wise: expressed directly in terms of their fields and parameters
 - almost all interesting problems satisfy this!
Transformations:

- **Purpose**
 - Transform a network into another network

- **Key ideas**
 - the network specification is very general
 - we can specialize it for different problems
 - we can transform it into a different network
 - we can specify a (feasible) solution
 - we can compose them

- **Benefits**
 - same syntax
 - one tool for specifying the network and its transformation
 - documentation (provenance)
Some open questions

- **Dataset are not self contained, we need mathematical models to understand the meaning of data.**
 - E.g: HVDC LCC reactive response, remedial actions,
 - Do you need to exchange mathematical models and not only data?
 - Is there emerging standards to do this? Modelica?

- **Corrective actions are sometimes implemented using closed loop controls. Any credible SCOPF must take into account these actions**
 - How to that using only a static modeling? Computation of final steady states?
 - Is using multi states a possible solution? (Base case) + (Post contingency state)+ (Post contingency & corrective actions state)
 - The consistency of the modeling of each component is critical (time response)
 - Do we need to include explicitly the dynamic behavior through DAE in optimization problems? Scalability? Computation time? Data management?

- **Active Distribution Networks (ADNs):**
 - How to take into account ADNs in power system optimization? Simplified responsive aggregated models?
 - How to define these aggregated models? Complexity even larger than the unsolved load modeling issue!